Finsler metrics with positive constant flag curvature
نویسندگان
چکیده
منابع مشابه
Reversible Homogeneous Finsler Metrics with Positive Flag Curvature
In this work, we continue with the classification for positively curved homogeneous Finsler spaces (G/H,F ). With the assumption that the homogeneous space G/H is odd dimensional and the positively curved metric F is reversible, we only need to consider the most difficult case left, i.e. when the isotropy group H is regular in G. Applying the fixed point set technique and the homogeneous flag c...
متن کاملGeodesic behavior for Finsler metrics of constant positive flag curvature on S
We study non-reversible Finsler metrics with constant flag curvature 1 on S and show that the geodesic flow of every such metric is conjugate to that of one of Katok’s examples, which form a 1-parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metrics with c...
متن کاملFinsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature
The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...
متن کاملTwo-Dimensional Finsler Metrics with Constant Curvature
We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archiv der Mathematik
سال: 2009
ISSN: 0003-889X,1420-8938
DOI: 10.1007/s00013-008-2981-5